

Elements of Machine Learning & Data Science

Winter semester 2023/24

Evaluation of Supervised Learning (1)

Prof. Holger Hoos (partially based on material from Wil van der Aalst)

Learning Goals

At the end of this module, students should be able to

- assess the quality of a model obtained from a supervised machine learning method using widely accepted methods, including standard performance metrics, confusion matrices, ROC curves
- demonstrate understanding and working knowledge of the problems that can occur when using supervised learning procedures and the models obtained from them
- explain when and why it is important to distinguish between training, validation and testing data
- explain standard validation techniques, including *k*-fold and leave-one-out cross-validation
- assess performance differences using appropriate statistical techniques
- explain the problems that can arise from unbalanced data sets and demonstrate understanding as well as working knowledge of methods for addressing these problems

Key questions:

- How good is an ML model?
- How good could an ML model be?

Key questions:

- How good is an ML model?
- How good could an ML model be?

You have used supervised ML to train a predictive model.

Question: How do you assess the quality of the model?

Motivation: Predicting delayed flights

ID	Origin	Destination	Precipitation	 Traffic	Target
1	Frankfurt	Cologne	139	 152	On Time
2	Madrid	Paris	349	 55	On Time
3	La Paz	Madrid	702	 76	Delayed
4	Hanoi	Singapore	251	 169	On Time
5	Dubai	Frankfurt	615	 117	Delayed
6	Cologne	Madrid	400	 89	On Time
7	Bergen	Paris	698	 28	Delayed
8	Rome	Barcelona	322	 9	On Time
9	Berlin	Rome	221	 5	On Time
10	Paris	Paris	132	 165	On Time
11	Toronto	Frankfurt	730	 220	Delayed

You have used supervised ML to train a predictive model.

Question: How do you assess the quality of the model?

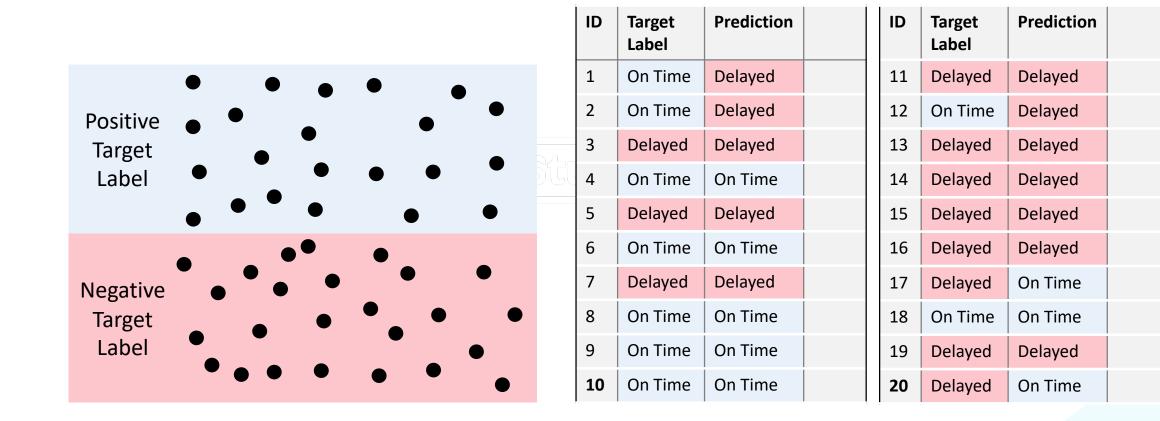
TPS = Think, Pair, Share Exercises

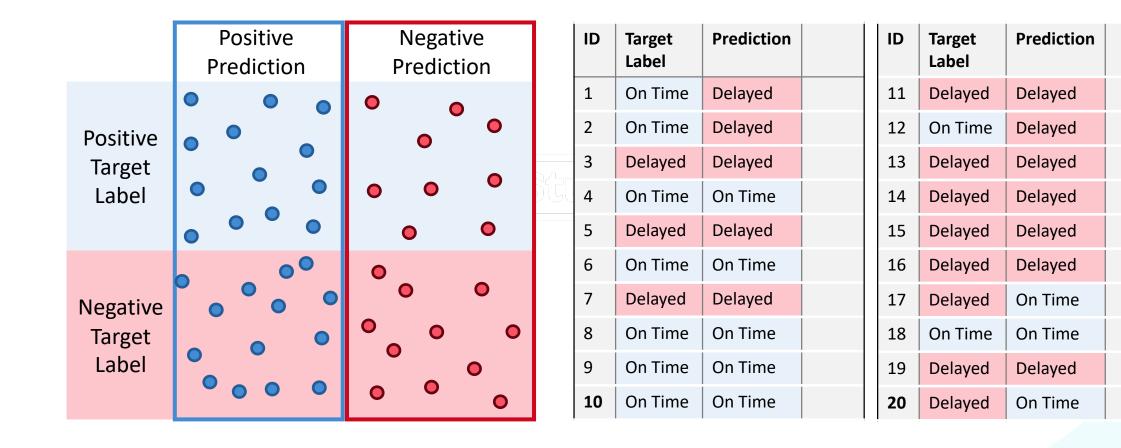
- 1. Be ready to take some notes.
- 2. Think about the problem/question.
- 3. Jot down your answers (bullet points).

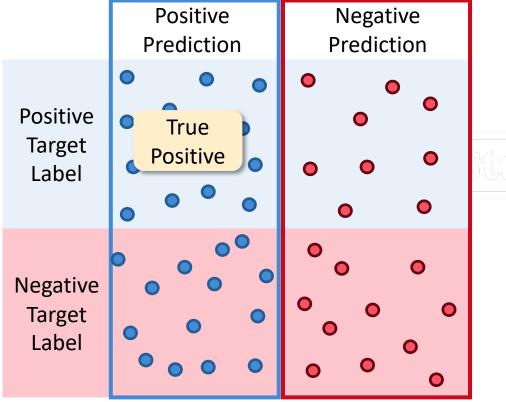
4. Pair up with your neighbour, explain/discuss your answers.5. Modify your answers based on your discussion.

6. Volunteer to give/explain your answer to everyone.

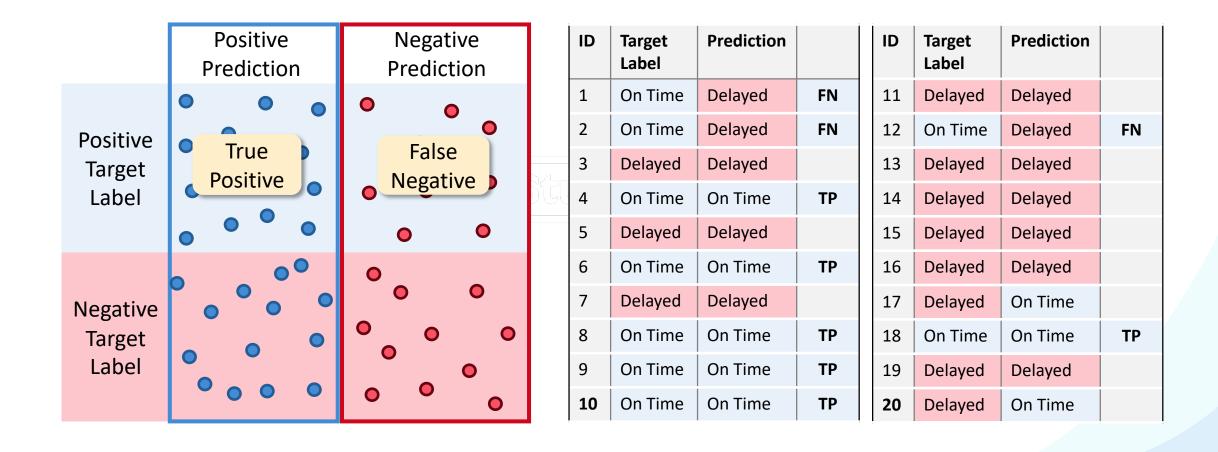
You have used supervised ML to train a predictive model.

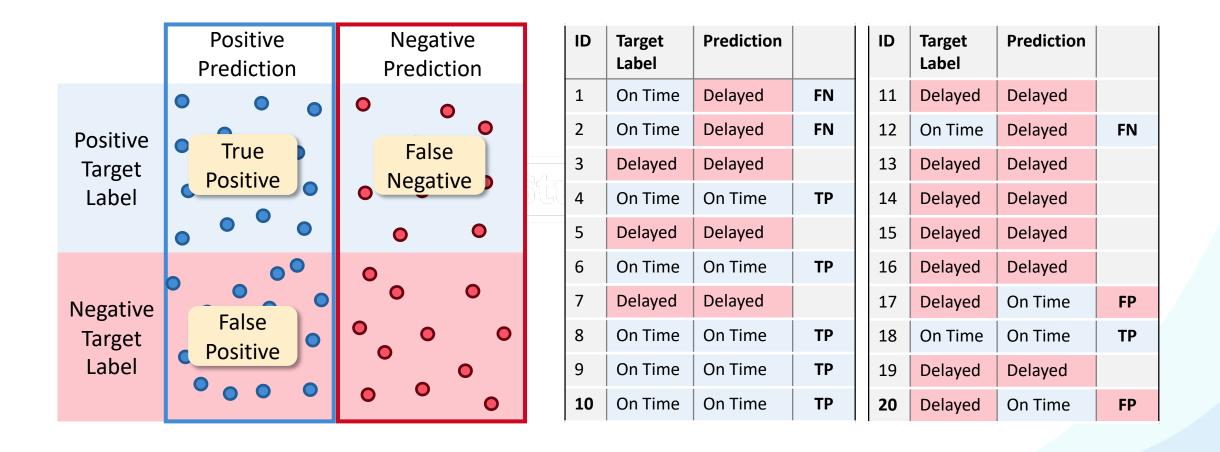

Running Example

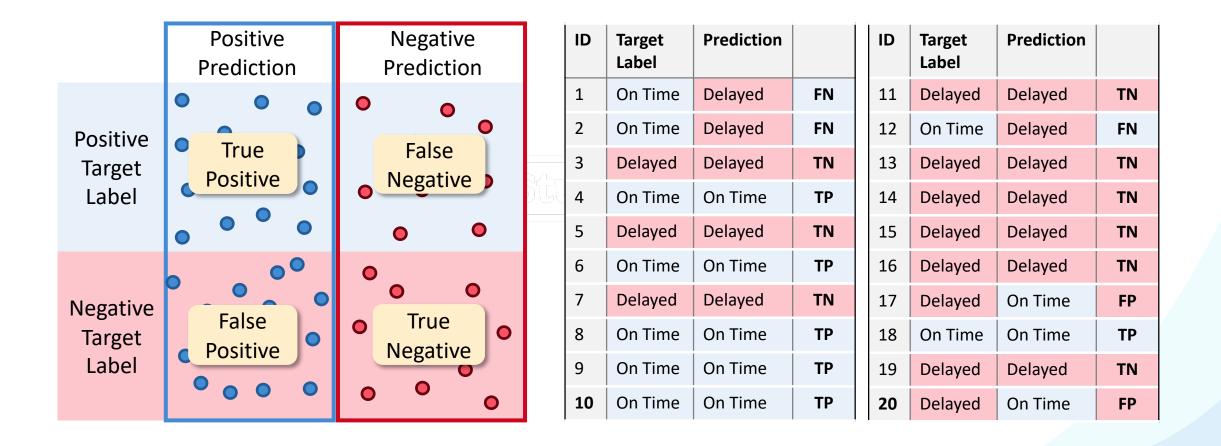

Predicting delayed flights (set of 20 instances)

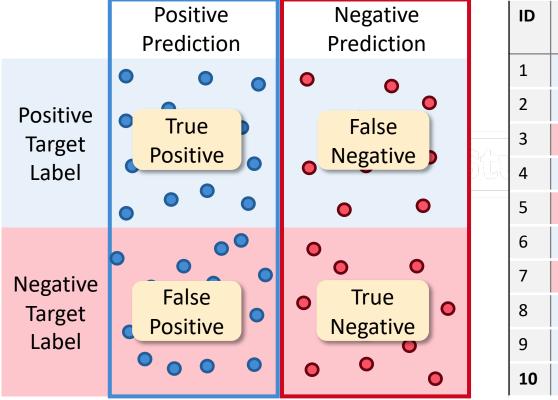

Target Feature:
 On Time (positive),
 Delayed (negative)

	ID	Target Label	Prediction
	1	On Time	Delayed
	2	On Time	Delayed
	3	Delayed	Delayed
j Stl	4	On Time	On Time
	5	Delayed	Delayed
	6	On Time	On Time
	7	Delayed	Delayed
	8	On Time	On Time
	9	On Time	On Time
	10	On Time	On Time


ID	Target Label	Prediction
11	Delayed	Delayed
12	On Time	Delayed
13	Delayed	Delayed
14	Delayed	Delayed
15	Delayed	Delayed
16	Delayed	Delayed
17	Delayed	On Time
18	On Time	On Time
19	Delayed	Delayed
20	Delayed	On Time






ID	Target Label	Prediction		ID	Target Label	Prediction	
1	On Time	Delayed		11	Delayed	Delayed	
2	On Time	Delayed		12	On Time	Delayed	
3	Delayed	Delayed		13	Delayed	Delayed	
4	On Time	On Time	ТР	14	Delayed	Delayed	
5	Delayed	Delayed		15	Delayed	Delayed	
6	On Time	On Time	ТР	16	Delayed	Delayed	
7	Delayed	Delayed		17	Delayed	On Time	
8	On Time	On Time	ТР	18	On Time	On Time	ТР
9	On Time	On Time	ТР	19	Delayed	Delayed	
10	On Time	On Time	ТР	20	Delayed	On Time	

Confusion Matrix

ID	Target Label	Prediction		ID	Target Label	Prediction	
1	On Time	Delayed	FN	11	Delayed	Delayed	TN
2	On Time	Delayed	FN	12	On Time	Delayed	FN
3	Delayed	Delayed	TN	13	Delayed	Delayed	TN
4	On Time	On Time	ТР	14	Delayed	Delayed	TN
5	Delayed	Delayed	TN	15	Delayed	Delayed	TN
6	On Time	On Time	ТР	16	Delayed	Delayed	TN
7	Delayed	Delayed	TN	17	Delayed	On Time	FP
8	On Time	On Time	ТР	18	On Time	On Time	ТР
9	On Time	On Time	ТР	19	Delayed	Delayed	TN
10	On Time	On Time	ТР	20	Delayed	On Time	FP

Confusion Matrix

	Positive Prediction	Negative Prediction	
Positive Target Label	TP (number of true positives)	FN (number of false negatives)	
Negative Target Label	FP (number of false positives)	TN (number of true negatives)	

r	ID	Target Label	Prediction		ID	Target Label	Prediction	
	1	On Time	Delayed	FN	11	Delayed	Delayed	TN
	2	On Time	Delayed	FN	12	On Time	Delayed	FN
л	3	Delayed	Delayed	TN	13	Delayed	Delayed	TN
ίςl	4	On Time	On Time	ТР	14	Delayed	Delayed	TN
	5	Delayed	Delayed	TN	15	Delayed	Delayed	TN
	6	On Time	On Time	ТР	16	Delayed	Delayed	TN
	7	Delayed	Delayed	TN	17	Delayed	On Time	FP
	8	On Time	On Time	ТР	18	On Time	On Time	ТР
	9	On Time	On Time	ТР	19	Delayed	Delayed	TN
	10	On Time	On Time	ТР	20	Delayed	On Time	FP

Confusion Matrix

	Positive	Negative	ID	Target Label	Prediction		ID	Target Label	Prediction	
	Prediction	Prediction	1	On Time	Delayed	FN	11	Delayed	Delayed	TN
1			2	On Time	Delayed	FN	12	On Time	Delayed	FN
Positive			3	Delayed	Delayed	TN	13	Delayed	Delayed	TN
Target	6	3	4	On Time	On Time	ТР	14	Delayed	Delayed	TN
Label			5	Delayed	Delayed	TN	15	Delayed	Delayed	TN
Negative			6	On Time	On Time	ТР	16	Delayed	Delayed	TN
Target	2	9	7	Delayed	Delayed	TN	17	Delayed	On Time	FP
Label			8	On Time	On Time	ТР	18	On Time	On Time	ТР
			9	On Time	On Time	ТР	19	Delayed	Delayed	TN
			10	On Time	On Time	ТР	20	Delayed	On Time	FP

We have trained a predictive model using supervised learning and computed a confusion matrix based on predictions on a given set of data.

Question: How can we assess performance with a single number?

Confusion Matrix D Performance Measures

	Positive Prediction	Negative Prediction	
Positive Target Label	TP=6	FN=3	
Negative Target Label	FP=2	TN=9	

True Positive Rate:	$TPR = \frac{TP}{TP + FN}$
False Negative Rate:	$FNR = \frac{FN}{TP + FN}$
False Positive Rate:	
True Negative Rate:	$TNR = \frac{TN}{FP+TN}$

Classification Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$

Misclassification Rate: $\frac{FP+FN}{TP+TN+FP+FN}$

Confusion Matrix D Performance Measures

	Positive Prediction	Negative Prediction	
Positive Target Label	TP=6	FN=3	
Negative Target Label	FP=2	TN=9	

True Positive Rate:	$TPR = \frac{TP}{TP + FN}$
False Negative Rate:	$FNR = \frac{FN}{TP + FN}$
False Positive Rate:	$FPR = \frac{FP}{FP+TN}$
True Negative Rate:	$TNR = \frac{TN}{FP+TN}$

Recall:
$$recall = \frac{TP}{TP + FN} = TPR$$

Precision: $precision = \frac{TP}{TP + FP}$ F₁: $F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$

Confusion Matrix Science Performance Measures

	Positive Prediction	Negative Prediction	
Positive Target Label	TP=6	FN=3	
Negative Target Label	FP=2	TN=9	

True Positive Rate: $TPR = \frac{TP}{TP+FN} = \frac{6}{6+3} = \frac{2}{3}$ False Negative Rate: $FNR = \frac{FN}{TP+FN} = \frac{3}{6+3} = \frac{1}{3}$ False Positive Rate: $FPR = \frac{FP}{FP+TN} = \frac{2}{2+9} = \frac{2}{11}$ True Negative Rate: $TNR = \frac{TN}{FP+TN} = \frac{9}{2+9} = \frac{9}{11}$

TPR + FNR = 1

FPR + TNR = 1

studyBuddy

Classification Accuracy:

Misclassification Rate:

Recall:

Precision:

F₁:

Confusion Matrix D Performance Measures

	Positive Prediction	Negative Prediction	
Positive Target Label	TP=6	FN=3	
Negative Target Label	FP=2	TN=9	

True Positive Rate:	$TPR = \frac{TP}{TP + FN} = \frac{6}{6+3} = \frac{2}{3}$
False Negative Rate:	$FNR = \frac{FN}{TP + FN} = \frac{3}{6+3} = \frac{1}{3}$
False Positive Rate:	$FPR = \frac{FP}{FP+TN} = \frac{2}{2+9} = \frac{2}{11}$
True Negative Rate:	$TNR = \frac{TN}{FP+TN} = \frac{9}{2+9} = \frac{9}{11}$
Classification Accurac	y: $\frac{TP+TN}{TP+TN+FP+FN} = \frac{6+9}{6+9+2+3} = \frac{15}{20}$
Misclassification Rate	: $\frac{FP+FN}{TP+TN+FP+FN} = \frac{2+3}{6+9+2+3} = \frac{5}{20}$
Recall:	Classification Accuracy + Misclassification Rate $= 1$
Precision:	+ Misclassification Rate $= 1$
с.	

F₁:

Confusion Matrix D Performance Measures

	Positive Prediction	Negative Prediction	
Positive Target Label	TP=6	FN=3	
Negative Target Label	FP=2	TN=9	

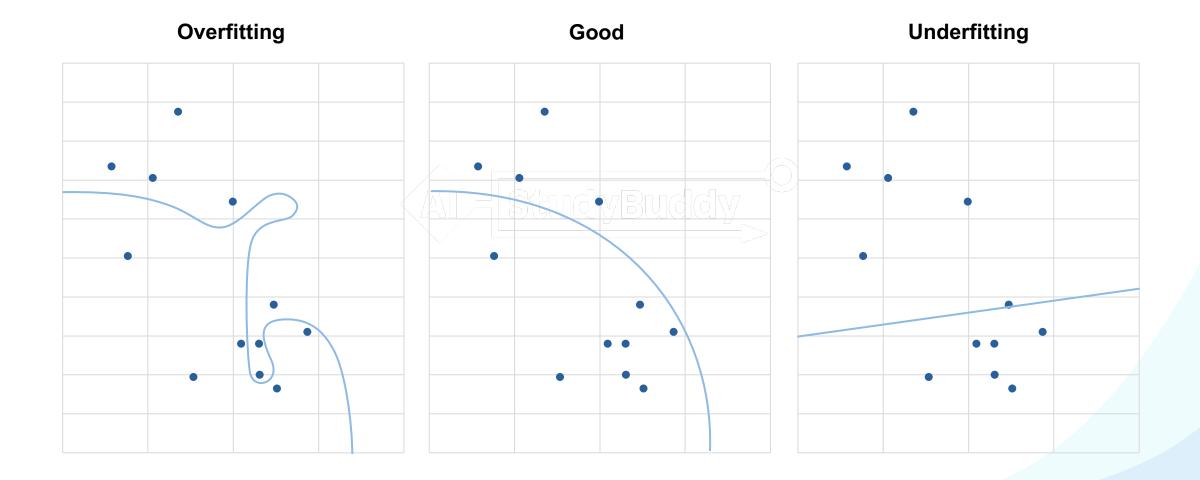
True Positive Rate:	$TPR = \frac{TP}{TP + FN} = \frac{6}{6+3} = \frac{2}{3}$	
False Negative Rate:	$FNR = \frac{FN}{TP + FN} = \frac{3}{6+3} = \frac{1}{3}$	
False Positive Rate:	$FPR = \frac{FP}{FP+TN} = \frac{2}{2+9} = \frac{2}{11}$	
True Negative Rate:	$TNR = \frac{TN}{FP+TN} = \frac{9}{2+9} = \frac{9}{11}$	
StudyBuddyClassification Accuracy: $\frac{TP+TN}{TP+TN+FP+FN} = \frac{6+9}{6+9+2+3} = \frac{15}{20}$ Misclassification Rate: $\frac{FP+FN}{TP+TN+FP+FN} = \frac{2+3}{6+9+2+3} = \frac{5}{20}$		

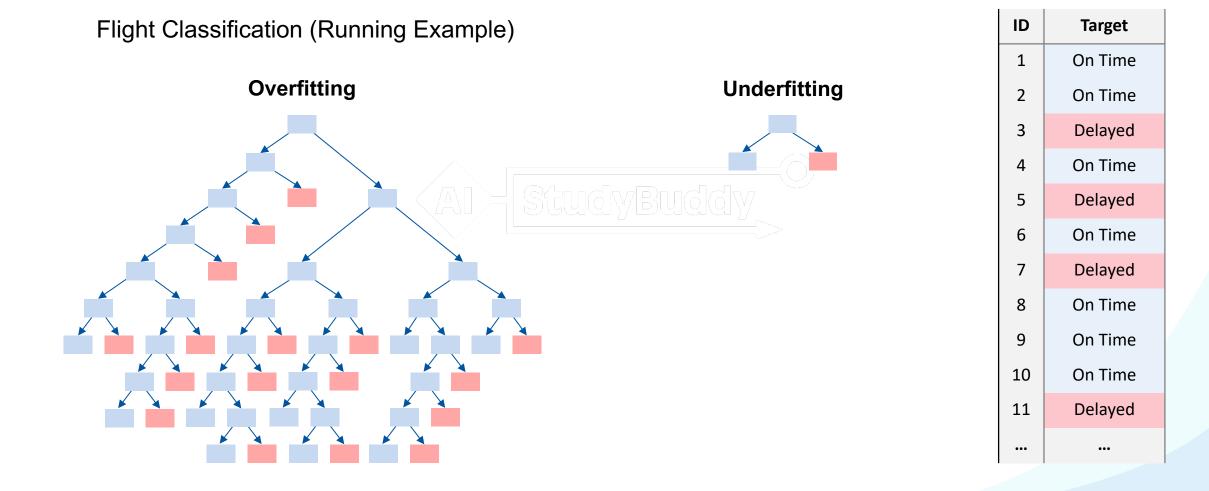
Recall: $recall = \frac{TP}{TP+FN} = TPR = \frac{2}{3} \approx 0.67$ Precision: $precision = \frac{TP}{TP+FP} = \frac{6}{6+2} = \frac{3}{4} = 0.75$ $F_1:$ $F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} = \frac{2 \cdot \frac{3}{4} \cdot \frac{2}{3}}{\frac{3}{4} + \frac{2}{3}} = \frac{12}{17} \approx 0.71$

We have trained a predictive model using supervised learning and computed a confusion matrix based on predictions on a given set of data.

Question: Which measure should we use to assess performance?

We have trained a predictive model using supervised learning and computed a confusion matrix based on predictions on a given set of data.

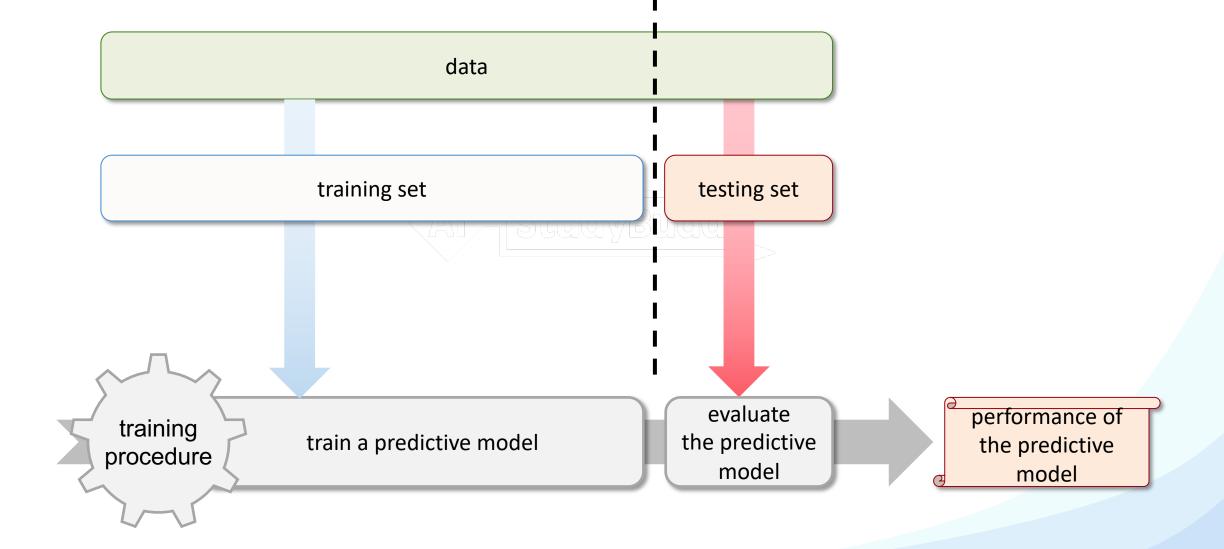

Question: Which measure should we use to assess performance?

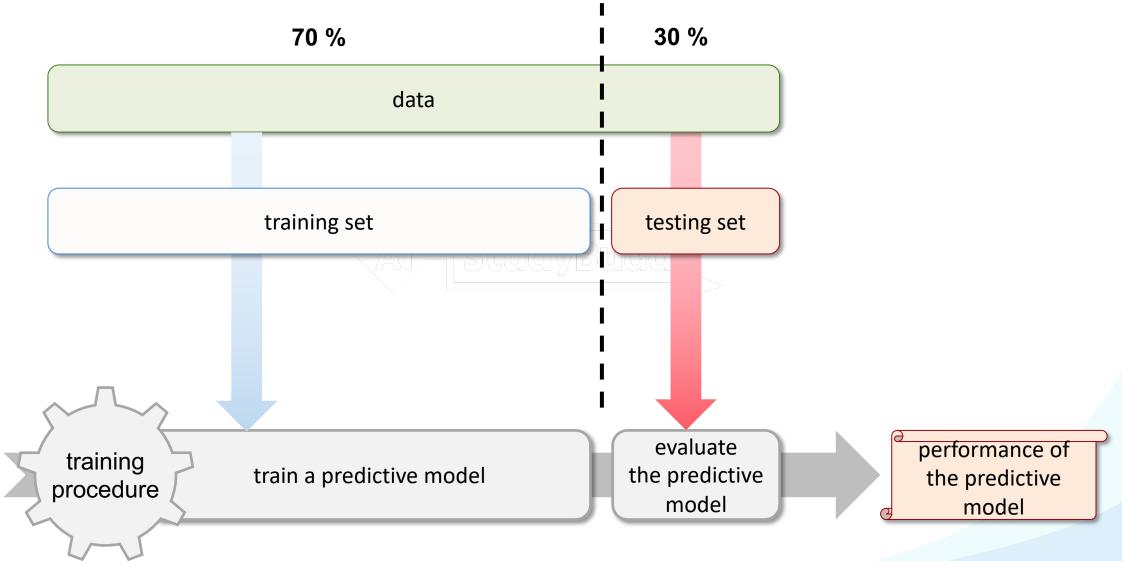

It depends ... Often, a single measure is not enough.

What set of instances do we use as the basis for assessing performance? StudyBuddy

What set of instances do we use as the basis for assessing performance? StudyBuddy

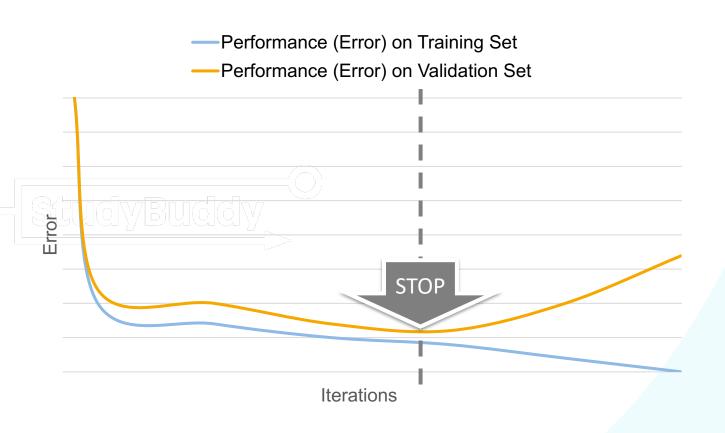
Let's use training instances. What could go wrong?



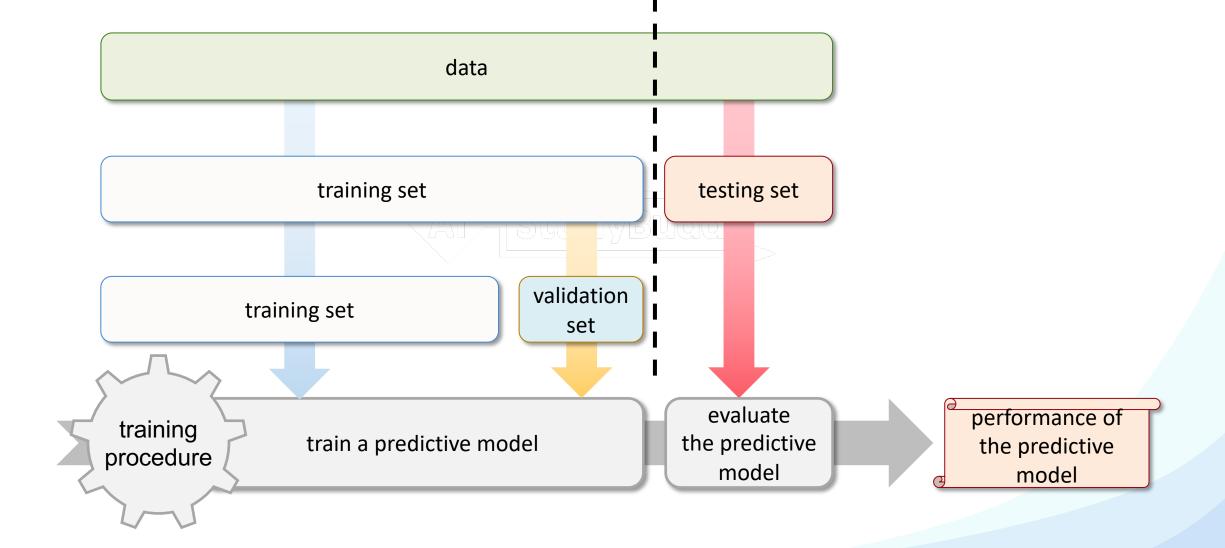

What set of instances do we use as the basis for assessing performance? StudyBuddy

Key issue: generalisation to new data lon't assess performance based on training data!

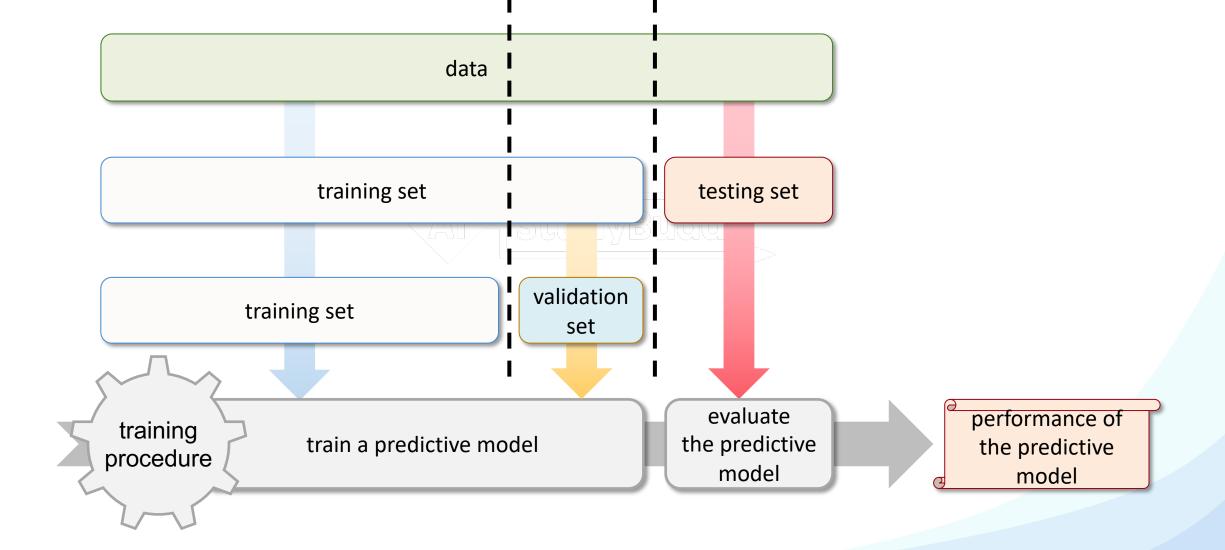
Training & Testing Data

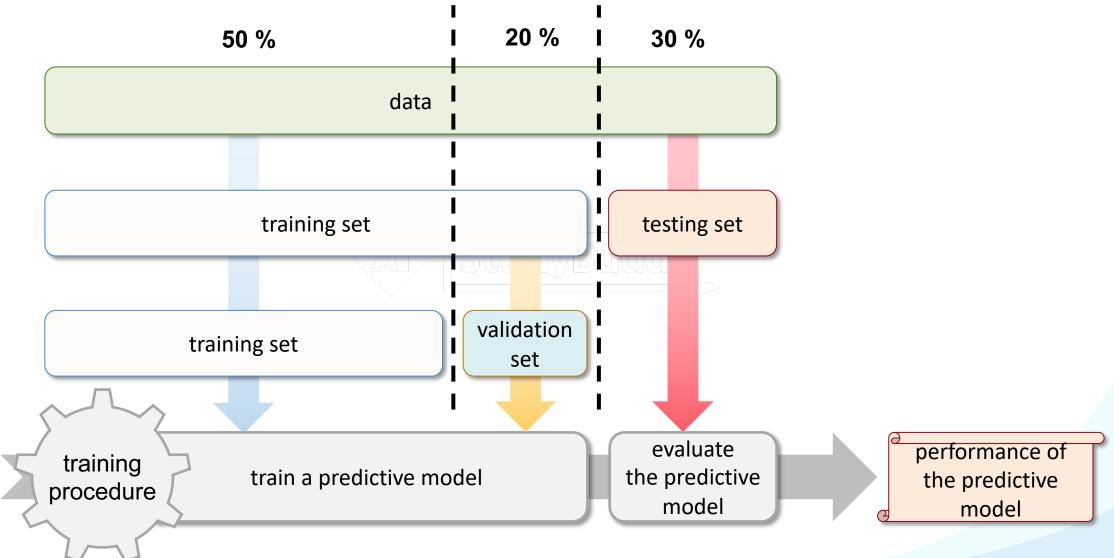


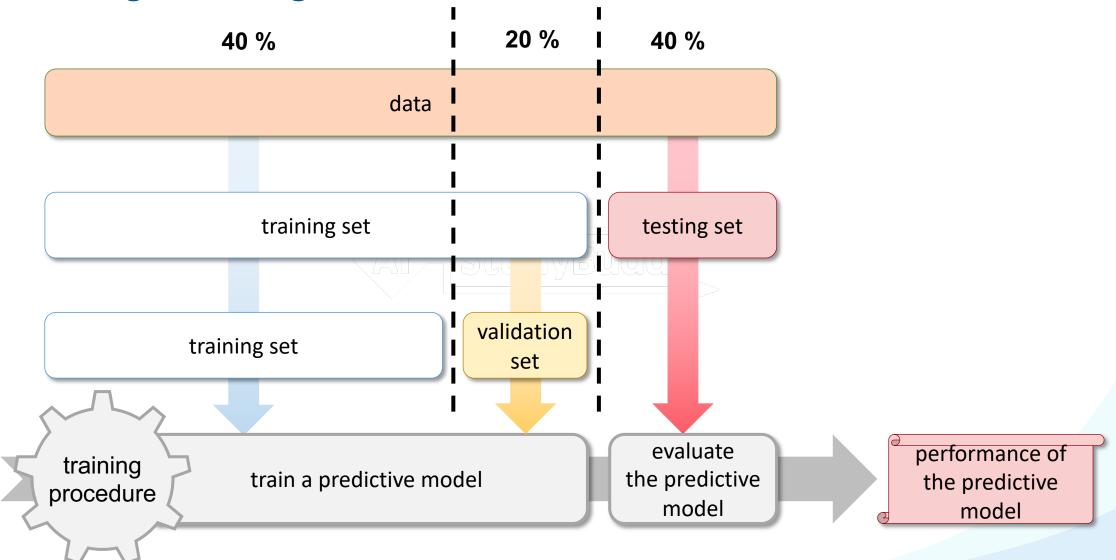
Training & Testing Data



Validation Set


- Training a predictive model is often done iteratively (e.g., Regression, Neural Networks)
- The model is fitted closer and closer to the training data
- The validation set can be used to avoid overfitting the training data
- Often used for parameter selection or hyperparameter tuning

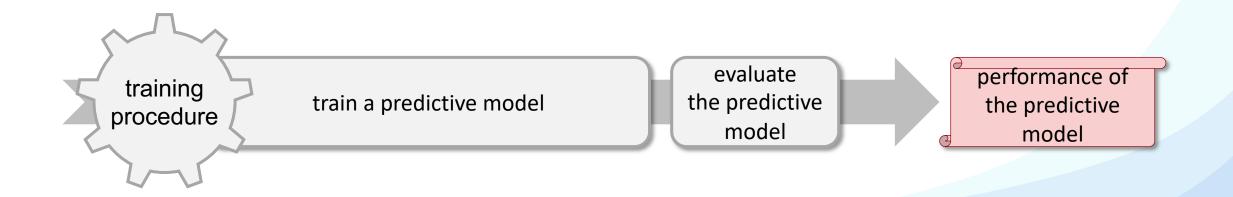

Training & Testing Data


Training & Testing Data

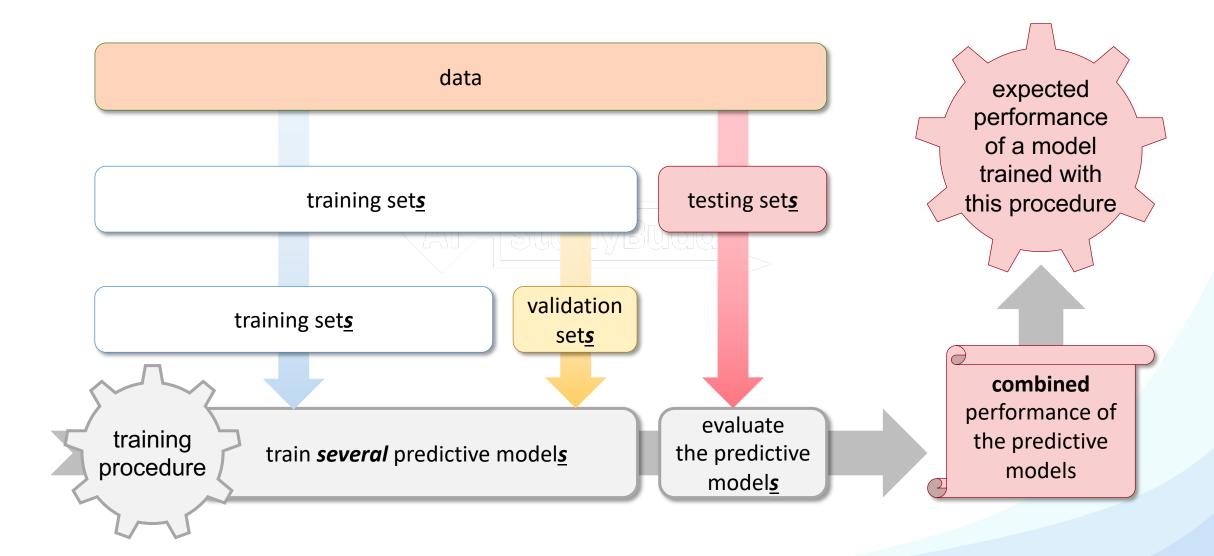
Training & Testing Data

Training & Testing Data

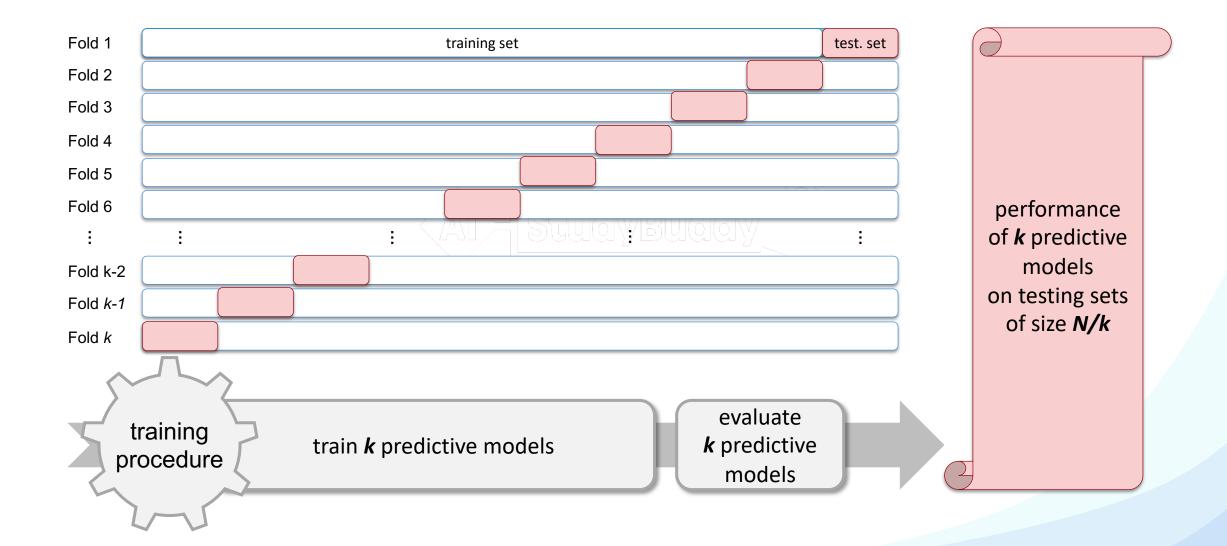
How to split into training, validation and testing sets if there are only 20 instances?

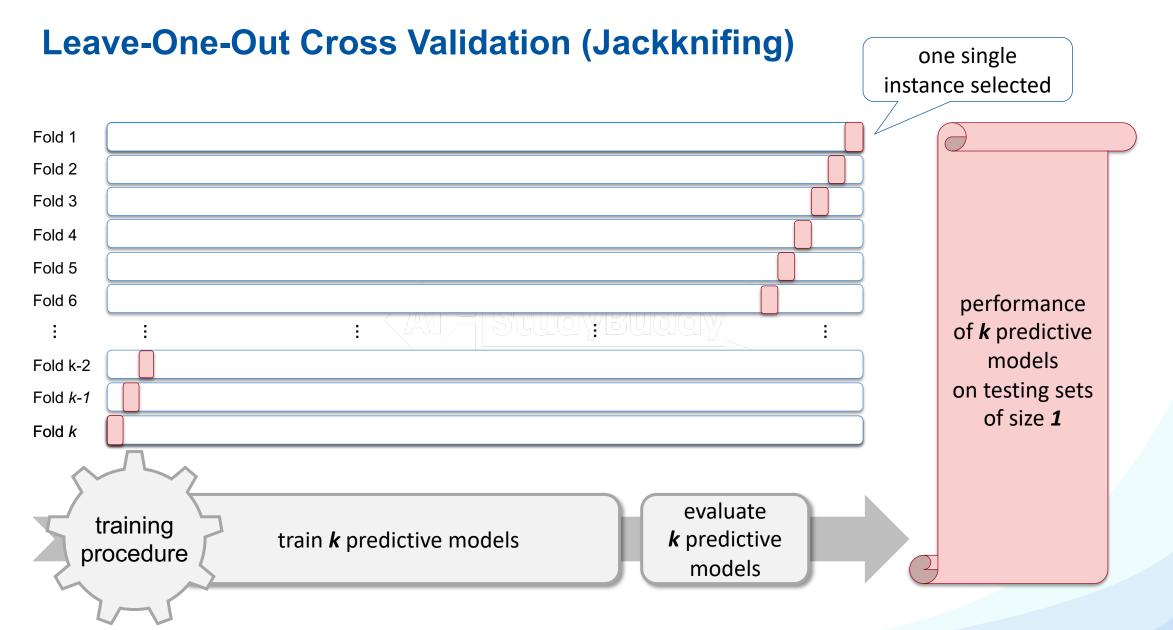

You are using supervised learning to obtain a predictive model, training on a dataset with only 20 instances.

Question: How do you assess the quality of the model?


Dealing with small datasets:

- Splitting into **one** training and **one** testing set is reliable only for sufficiently large data sets
- On small data sets the training, validation or testing set become too small
- Small data set increases danger of a 'lucky split' (with most easy instances in the testing set)




Motivation

k-Fold Cross Validation

Cross Validation

What problem could arise?

ID	Target Label	Prediction	ID	Target Label	Prediction
1	On Time	On Time	11	On Time	On Time
2	On Time	On Time	12	On Time	On Time
3	On Time	On Time	13	On Time	On Time
4	On Time	On Time	14	On Time	On Time
5	On Time	On Time	15	On Time	On Time
6	On Time	On Time	16	On Time	On Time
7	On Time	On Time	17	On Time	On Time
8	On Time	On Time	18	On Time	On Time
9	On Time	On Time	19	Delayed	On Time
10	On Time	On Time	20	Delayed	On Time

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0

Motivational Example

- A test set with many (18) positive instances and few (2) negative instances
- A model that always predicts
 positive

	ID	Target Label	Prediction	ID	Target Label	Prediction	
	1	On Time	On Time	11	On Time	On Time	
	2	On Time	On Time	12	On Time	On Time	
J	3	On Time	On Time	13	On Time	On Time	
	4	On Time	On Time	14	On Time	On Time	
	5	On Time	On Time	15	On Time	On Time	
	6	On Time	On Time	16	On Time	On Time	
	7	On Time	On Time	17	On Time	On Time	
	8	On Time	On Time	18	On Time	On Time	
	9	On Time	On Time	19	Delayed	On Time	
	10	On Time	On Time	20	Delayed	On Time	

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0

Motivational Example

- A test set with many (18) positive instances and few (2) negative instances
- A model that always predicts positive (= On Time)

Recall:

$$recall = \frac{TP}{TP + FN} = \frac{18}{18 + 0} = 1.0$$

Precision:

$$precision = \frac{TP}{TP+FP} = \frac{18}{18+2} = \frac{18}{20} = 0.9$$

ID	Target Label	Prediction	ID	Target Label	Prediction
1	On Time	On Time	11	On Time	On Time
2	On Time	On Time	12	On Time	On Time
3	On Time	On Time	13	On Time	On Time
4	On Time	On Time	14	On Time	On Time
5	On Time	On Time	15	On Time	On Time
6	On Time	On Time	16	On Time	On Time
7	On Time	On Time	17	On Time	On Time
8	On Time	On Time	18	On Time	On Time
9	On Time	On Time	19	Delayed	On Time
10	On Time	On Time	20	Delayed	On Time

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0

Average Class Accuracy

Average recall over the elements in the set of possible target feature values $C = \{\text{Delayed}, \text{On Time}\}$

	ID	Target Label	Prediction	ID	Target Label	Prediction
	1	On Time	On Time	11	On Time	On Time
4	2	On Time	On Time	12	On Time	On Time
1	3	On Time	On Time	13	On Time	On Time
>	4	On Time	On Time	14	On Time	On Time
	5	On Time	On Time	15	On Time	On Time
	6	On Time	On Time	16	On Time	On Time
	7	On Time	On Time	17	On Time	On Time
	8	On Time	On Time	18	On Time	On Time
	9	On Time	On Time	19	Delayed	On Time
	10	On Time	On Time	20	Delayed	On Time

-- -

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0
recall =	$\frac{TP}{TP+FN} =$	$\frac{18}{18+0} = 1.0$
	Delayed	
	Delayed Prediction	On Time Prediction
Delayed Target Label		
Target	Prediction	Prediction

Average Class Accuracy

Average recall over the elements in the set of possible target feature values $C = \{\text{Delayed}, \text{On Time}\}$

ID	Target Label	Prediction	ID	Target Label	Prediction
1	On Time	On Time	11	On Time	On Time
2	On Time	On Time	12	On Time	On Time
3	On Time	On Time	13	On Time	On Time
4	On Time	On Time	14	On Time	On Time
5	On Time	On Time	15	On Time	On Time
6	On Time	On Time	16	On Time	On Time
7	On Time	On Time	17	On Time	On Time
8	On Time	On Time	18	On Time	On Time
9	On Time	On Time	19	Delayed	On Time
10	On Time	On Time	20	Delayed	On Time

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0
recall =	$\frac{TP}{TP+FN} =$	$\frac{18}{18+0} = 1.0$
	Delayed Prediction	On Time Prediction
Delayed Target Label	0	2
On Time Target Label	0	18

 $recall = \frac{TP}{TP + FN} = \frac{0}{0+2} = 0.0$

Average Class Accuracy

Average recall over the elements in the set of possible target feature values $C = \{\text{Delayed}, \text{On Time}\}$

- arithmetic mean: $\frac{1}{|C|} \sum_{c \in C} recall_c$
- harmonic mean: $\frac{1}{\frac{1}{|C|}\sum_{c\in C}\frac{1}{recall_c}}$

ID	Target Label	Prediction	ID	Target Label	Prediction	
1	On Time	On Time	11	On Time	On Time	
2	On Time	On Time	12	On Time	On Time	
3	On Time	On Time	13	On Time	On Time	
4	On Time	On Time	14	On Time	On Time	
5	On Time	On Time	15	On Time	On Time	
6	On Time	On Time	16	On Time	On Time	
7	On Time	On Time	17	On Time	On Time	
8	On Time	On Time	18	On Time	On Time	
9	On Time	On Time	19	Delayed	On Time	
10	On Time	On Time	20	Delayed	On Time	

	On Time Prediction	Delayed Prediction
On Time Target Label	18	0
Delayed Target Label	2	0
$recall = \frac{TP}{TP + FN} = \frac{18}{18 + 0} = 1.0$		
	Delayed Prediction	On Time Prediction
Delayed Target Label	0	2
On Time Target Label	0	18

 $recall = \frac{TP}{TP+FN} = \frac{0}{0+2} = 0.0$

Average Class Accuracy

Average recall over the elements in the set of possible target feature values

$C = \{ \text{Delayed, On Time} \}$	
(AI) StudyBuddy	
arithmetic mean:	
$\frac{1}{ C } \sum_{c \in C} recall_c = \frac{1}{2}(1+0) = 0.5$,

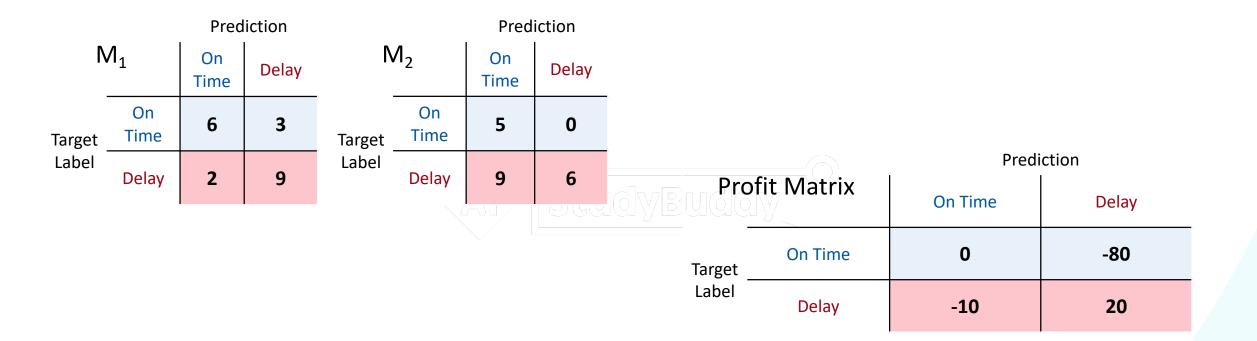
• harmonic mean: $\frac{1}{\frac{1}{|C|}\sum_{c\in C}\frac{1}{recall_c}} = \frac{1}{\frac{1}{2}(\frac{1}{1} + \frac{1}{0})} = 0.0$ $\frac{1}{0} = \infty \text{ in the limit}$

ID	Target Label	Prediction	ID	Target Label	Prediction
1	On Time	On Time	11	On Time	On Time
2	On Time	On Time	12	On Time	On Time
3	On Time	On Time	13	On Time	On Time
4	On Time	On Time	14	On Time	On Time
5	On Time	On Time	15	On Time	On Time
6	On Time	On Time	16	On Time	On Time
7	On Time	On Time	17	On Time	On Time
8	On Time	On Time	18	On Time	On Time
9	On Time	On Time	19	Delayed	On Time
10	On Time	On Time	20	Delayed	On Time

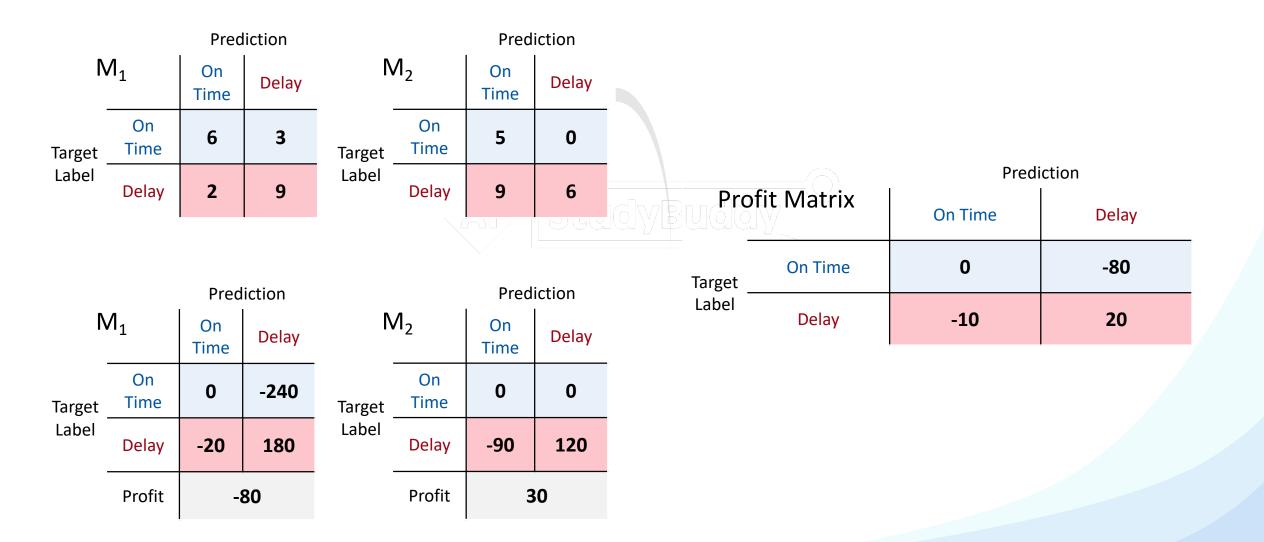
What's worse: Predicting a flight to be delayed and having it arrive on time, or predicting it to be on time and find it to be delayed?

- Does the self-driving car need to stop?
- Should the patient be tested for a severe disease?

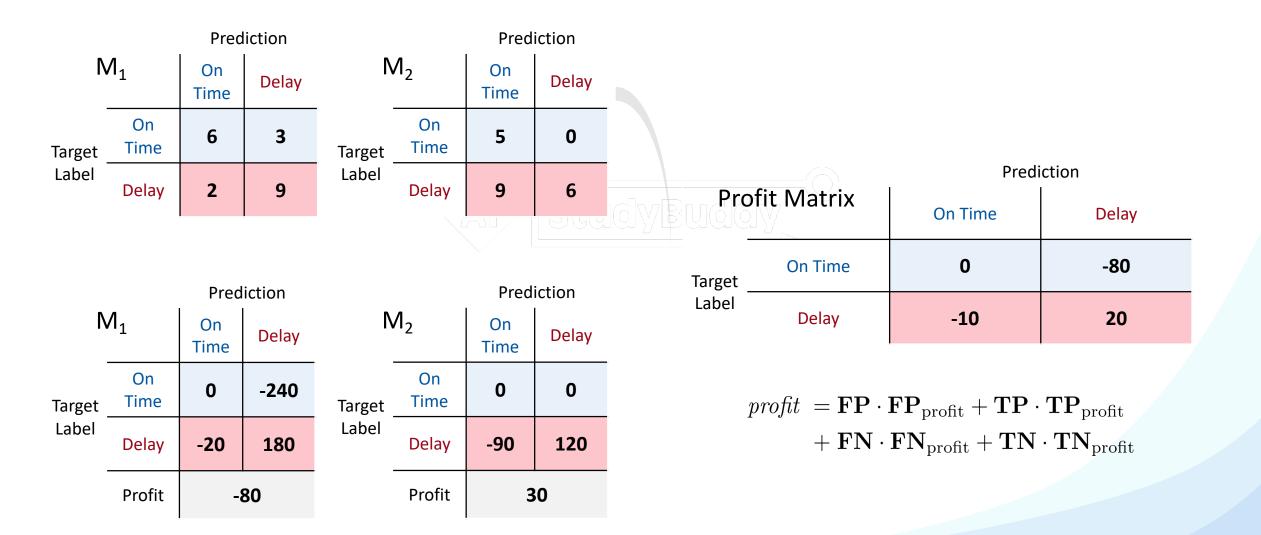
FPs and **FN**s can have (very) different cost!


Profit Matrix

Example Flight Classification


- Correctly inform customers about a delay:
 - Customers can plan to arrive later
 - A little 'profit' from less unhappy customers
- Incorrectly inform customers about a delay:
 - Customers arrive too late
 - *Huge* loss of 'profit' by unnecessarily delayed flight
- Incorrectly predicting 'Delayed' (FN) costs more than incorrectly predicting 'On Time' (FP)

		Prediction			
BUQQ	fit Matrix	On Time	Delay		
Target _ Label	On Time	0	-80		
	Delay	-10	20		


Profit (Utility) Matrix

Profit Matrix

Profit Matrix

Key concepts covered today:

- confusion matrix
- performance measures for binary classification
- training, testing and validation sets
- k-fold cross validation
- leave-one-out cross validation (jackknife)
- bootstrap sampling validation
- imbalanced data, average class accuracy
- profit (utility) matrix

Preparation for Tuesday:

Investigate the following questions:

- How to assess predictive models for multi-class classification? (> 2 target classes, *e.g.*, on time, mildly delayed, severely delayed)
- How to assess predictive models for regression tasks? (predictions = numbers, *e.g.*, minutes of delay)

(We will use this for TPS exercises with the T part done before class.)

Sources

- [1] Erik Heddema on Unsplash, Unsplash License, (<u>https://unsplash.com/de/fotos/k_kz0jmyOmE</u>)
- [2] Matt C on Unsplash, Unsplash License, (<u>https://unsplash.com/de/fotos/ubHRHM37ddE</u>)